

EMPOWERING OLIGONUCLEOTIDE THERAPEUTICS

COMPANY PRESENTATION JUNE 2022

DISCLAIMERS

This presentation may contain forward looking statements. You should not place undue reliance on forward-looking statements because they are subject to numerous uncertainties and factors relating to our operations and business environment, all of which are difficult to predict and many of which are beyond our control. Words such as, but not limited to, "look forward to," "believe," "expect," "anticipate," "estimate," "intend," "plan," "would," "should", "continue", "might", "potential", "predict", "projection", "seek", "will" and "could ," and similar expressions or words, identify forward looking statements. These forward-looking statements include statements about the initiation, timing, progress, results, and cost of our research and development programs and our current and future preclinical studies and clinical trials, including statements regarding the timing of initiation and completion of studies or trials and related preparatory work, the period during which the results of the trials will become available, and our research and development programs; our ability to successfully manufacture our product candidates for preclinical use, if approved; the ability and willingness of our third-party strategic collaborators to continue research and development activities relating to our ability to obtain funding for our operations necessary to complete further development and commercialization of our product candidates; our ability to obtain and maintain regulatory approval of our product candidates; the size and growth potential of the markets for our product candidates, and our ability to serve those markets; our financial performance; the effect of the COVID-19 pandemic, including mitigation efforts and economic effects, on any of the foregoing or other aspects of our business operations, including but not limited to our preclinical studies and product candidates.

New risks and uncertainties may emerge from time to time, and it is not possible to predict all risks and uncertainties. Except as required by applicable law, we do not plan to publicly update or revise any forward looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise. Although we believe the expectations reflected in such forward looking statements are reasonable, we can give no assurance that such expectations will prove to be correct. As you view and consider this presentation, you should understand that these statements are not guarantees of performance or results and that our actual results of operations, financial condition and liquidity, and the development of the industry in which we operate, may differ materially from those made in or suggested by the forward-looking statements contained in this presentation. No representations or warranties (expressed or implied) are made about the accuracy of any such forward looking statements. We do not undertake to revise forward-looking statements to reflect future events or circumstances.

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third party sources and the Company's own internal estimates and research. While we believe these third party sources to be reliable as of the date of this presentation, we have not independently verified, and make no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third party sources. Finally, while we believe our own internal research is reliable, such research has not been verified by any independent source.

This presentation contains references to our trademarks and service marks and to those belonging to other entities. Solely for convenience, trademarks and trade names referred to in this Presentation may appear without the ® or TM symbols, but such references are not intended to indicate, in any way, that we will not assert, to the fullest extent under applicable law, our rights or the rights of the applicable licensor to these trademarks and trade names. We do not intend our use or display of other companies' trade names, trademarks or service marks to imply a relationship with, or endorsement or sponsorship of us by, any other companies.

This presentation discusses product candidates that are under preclinical or clinical evaluation and that have not yet been approved for marketing by the U.S. Food and Drug Administration or any other regulatory authority. No representation is made as to the safety or effectiveness of these product candidates for the use for which such product candidates are being studied.

A NEXT-GENERATION OLIGONUCLEOTIDE DELIVERY PLATFORM WITH THE POTENTIAL TO TRANSFORM PATIENT OUTCOMES

Our **Enhanced Delivery Oligonucleotide (EDO)** platform is engineered to offer enhanced therapeutic activity and improved tolerability

Rare disease, clinical-stage company with potentially significant value inflection points anticipated over next 24 months:

DMD Ph1 HNV data YE22 DMD & DM1 clinical POC 2024

Designed to achieve greater skeletal & cardiac muscle penetrance; extensive portfolio of product candidates for the treatment of multiple neuromuscular diseases (NMD)

Lead assets, PGN-EDO51 and PGN-EDODM1, target a potentially large market opportunity, with ~130k patients* across Duchenne muscular dystrophy (DMD) exon 51 and myotonic dystrophy type 1 (DM1) in US/EEA/JP

*DMD patient numbers: 15k US + 25k EEA + 5k JP whole population (range used: Crisafulli et al – 7.1/100k males; Orphanet – 4.78/100k pop). Exon 51 population 13% of total. DM1 patient numbers: 1 in 8,000 (Johnson et al); 40k US + 75k EEA + 15k JP.

PEPGEN: EXPERIENCED TEAM OF COMPANY BUILDERS, SCIENTISTS, AND CLINICIANS

Management team

(Director)

RACAPITAL

(Director)

S⁰C^XI^FE⁰N^RC^DE

(Chair)

2 Alnylam

i Immuneering

IMAGO

(Director)

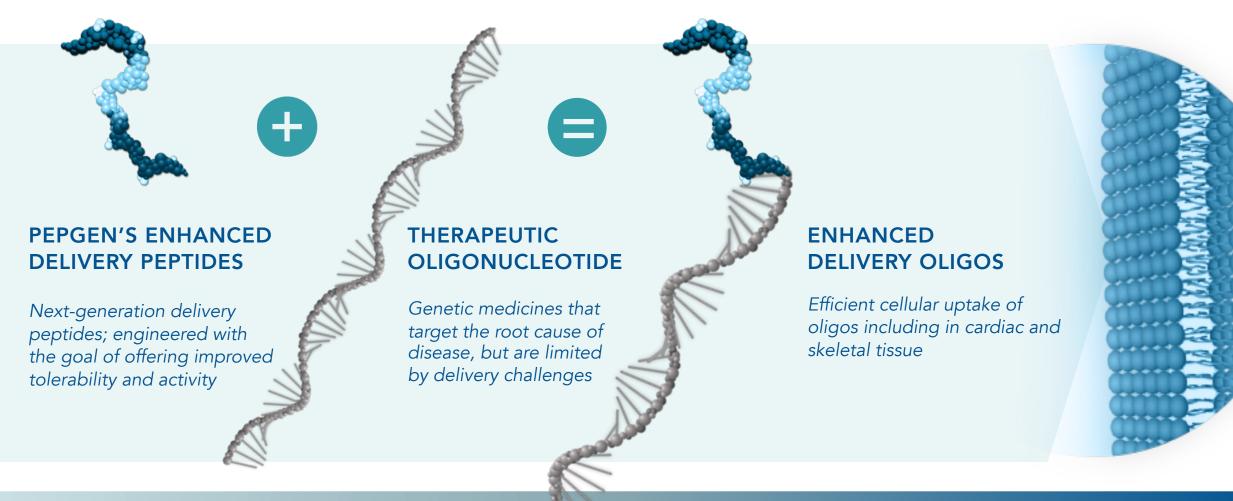
Pardes Biosciences

WE ARE BUILDING ON FDA-APPROVED EXON 51 SKIPPING MODALITIES TO DEVELOP THE NEXT GENERATION OF OLIGO TX

APPROVED EXON 51 PMO

Drug	Sponsor	Exon	Dystrophin restoration*	
EXONDYS 51® (eteplirsen)	Sarepta Therapeutics	Exon 51	0.44%	
2021 sales: \$454M (US & Israel)**				

PEPGEN'S STEP CHANGE


- Enhanced delivery to skeletal muscle (inc. diaphragm), cardiac muscle and the CNS
- Greatest exon skipping potency at tolerable target dose levels compared to any approved exon 51 therapeutic or known development candidate***
- Potential for greater dystrophin production
- Enhanced balance between activity and tolerability compared to early delivery peptides
- Robust & scalable manufacturing

* Clinical data included in drug label (FDA). **Source: Sarepta 2021 10K filing. *** Based on a head-to-head comparison with the most clinically-advanced peptide-conjugated oligonucleotide therapeutic in NHP, and on cross-trial comparisons with publicly-available data for other preclinical approaches in NHP.

THE POWER OF EDOs

Enhanced Delivery Oligonucleotides are well-characterized therapeutic PMO oligonucleotides conjugated to proprietary delivery-enhancing peptides

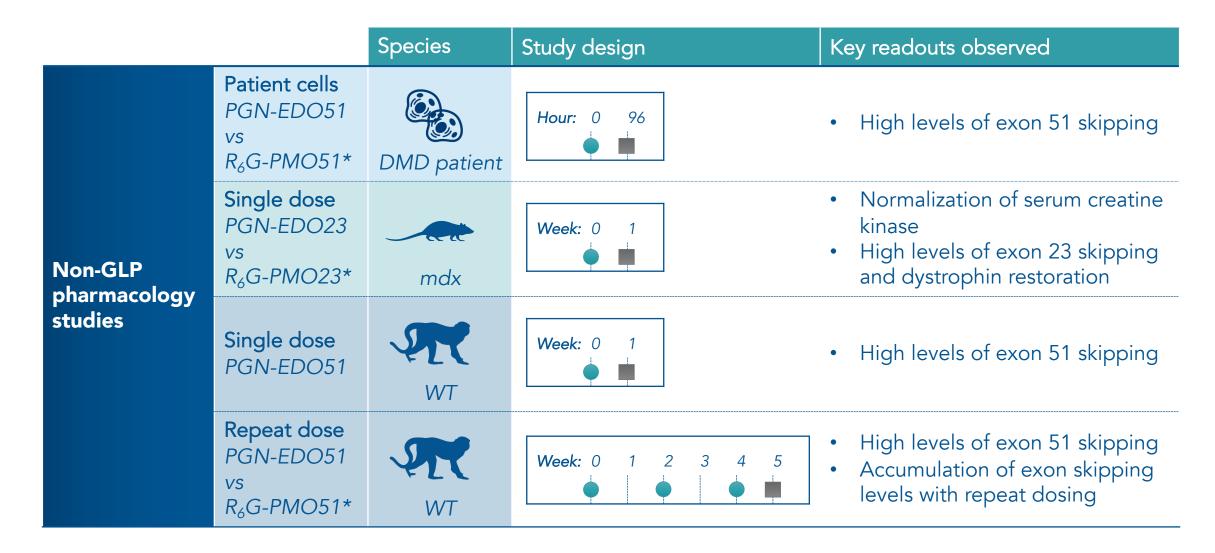
SCALABLE EDO TECHNOLOGY DESIGNED TO ENABLE BROAD PORTFOLIO

PROGRAM	INDICATION TARGET	DISCOVERY	PRECLINICAL	PHASE 1	PHASE 2	PHASE 3	NEXT ANTICIPATED MILESTONE
PGN-EDO51	Duchenne muscular dystrophy Exon 51						YE22 Ph1 HNV topline clinical data
PGN-EDODM1	Myotonic dystrophy type 1 DMPK						1H23 IND submission
PGN-EDO53	Duchenne muscular dystrophy Exon 53						2H22 NHP exon skipping data
PGN-EDO45	Duchenne muscular dystrophy Exon 45						2H22 Candidate nomination
PGN-EDO44	Duchenne muscular dystrophy Exon 44						2H22 Candidate nomination

FUTURE PIPELINE OPPORTUNITIES

Additional neuromuscular indications

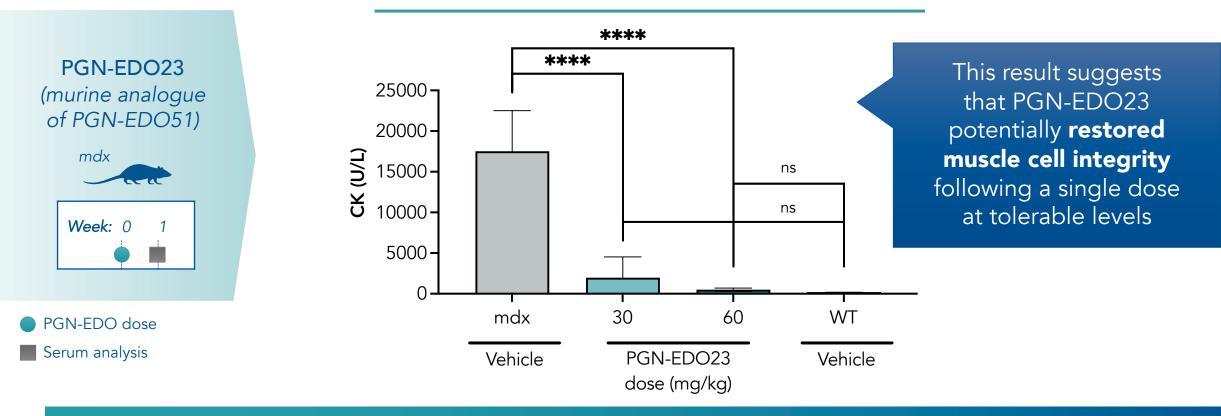
Neurologic indications


PGN-ED051 FOR DUCHENNE MUSCULAR DYSTROPHY

DUCHENNE MUSCULAR DYSTROPHY IS A DEBILITATING, PROGRESSIVE MUSCLE-WASTING DISEASE

ROOT CAUSE OF DISEASE	SYMPTOMATOLOGY & NATURAL HISTORY	EXON 51 PATIENT POPULATION*	EXON 51 THERAPEUTIC LANDSCAPE
 Caused by mutations in the dystrophin gene Absence of dystrophin leads to muscle degeneration 	 Progressive loss of function, including ambulation Cardiac & respiratory conditions Lifespan ~25 years 	~2,000 (US) ~3,200 (EEA) ~700 (JP)	 Exondys51® approved in US on the basis of <1% dystrophin restoration Not approved in EEA or JP

THE ACTIVITY OF OUR EDO PLATFORM IN DMD HAS BEEN EVALUATED IN MULTIPLE PRECLINICAL MODELS



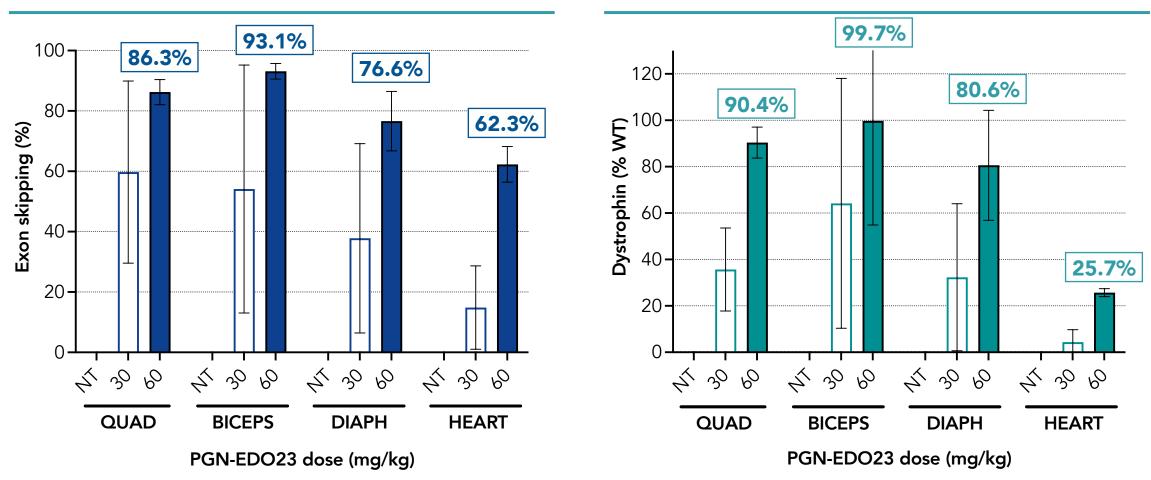
*R₆G-PMO51 is R₆G peptide conjugated to eteplirsen. R₆G-PMO23 is R₆G peptide conjugated to murine exon 23-skipping sequence.

PGN-EDO dose

MDX MICE: A SINGLE DOSE OF PGN-EDO23 WAS OBSERVED TO NORMALIZE CREATINE KINASE, A MARKER OF MUSCLE DAMAGE

SERUM CREATINE KINASE

PGN-EDO23 utilizes the same EDO delivery peptide as our clinical candidate

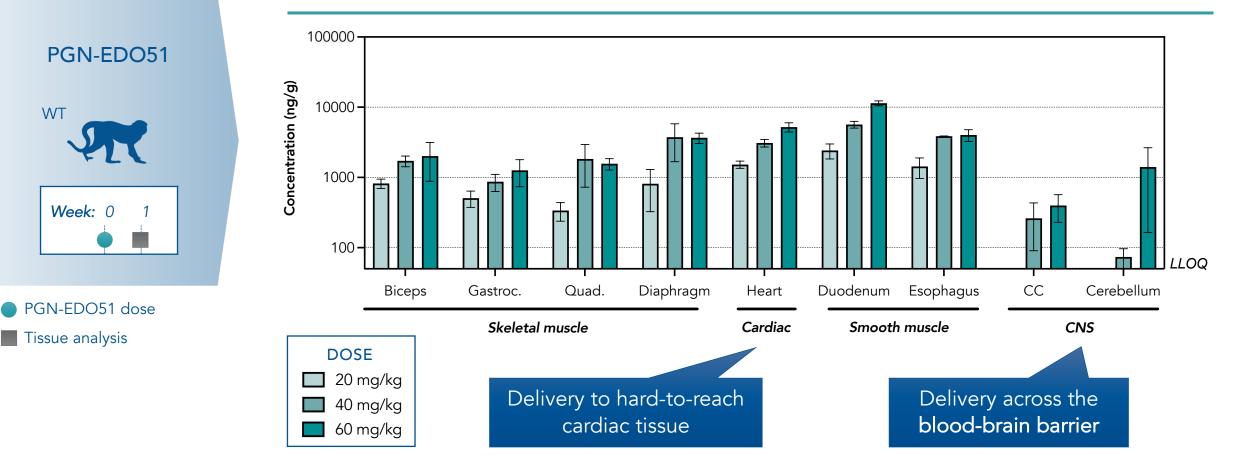


Protocol: peptide-PMO conjugate and a saline control were administered intravenously (IV) to mdx and WT mice; serum creatine kinase measured 7 days after injection. Mean ± SD; **** = $p \le 0.0001$; **ns** = $p \ge 0.05$; n = 3 for control groups and 5 for treated group.

MDX MICE: ROBUST DYSTROPHIN RESTORATION OBSERVED 7 DAYS AFTER A SINGLE, GENERALLY WELL-TOLERATED DOSE OF PGN-EDO23

EXON SKIPPING

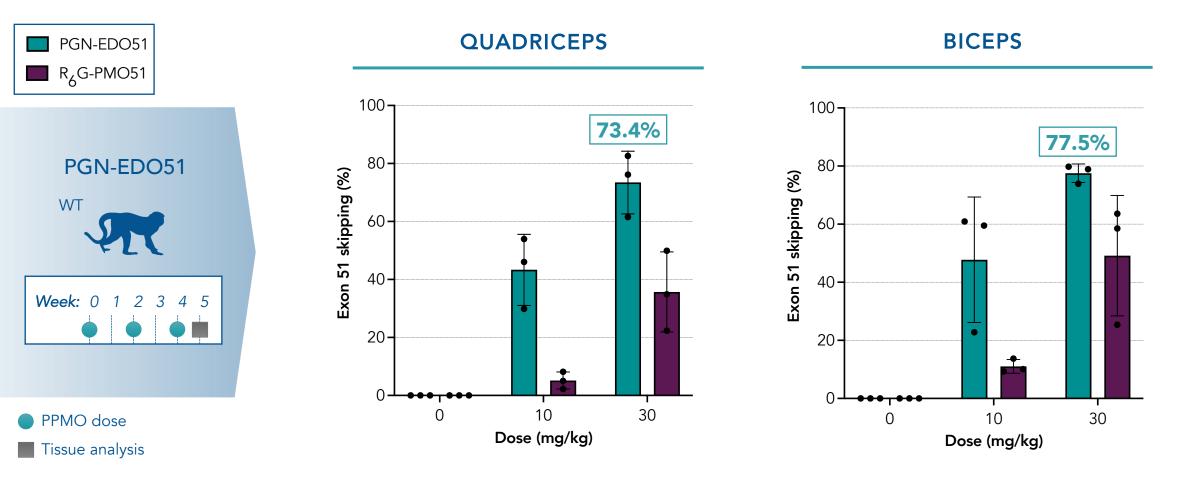
DYSTROPHIN



Protocol: peptide-PMO conjugate and a saline control were administered intravenously (IV) to mdx and WT mice; exon skipping and dystrophin restoration measured 7 days after injection. Mean \pm SD; n = 3 for control groups and 3 for treated

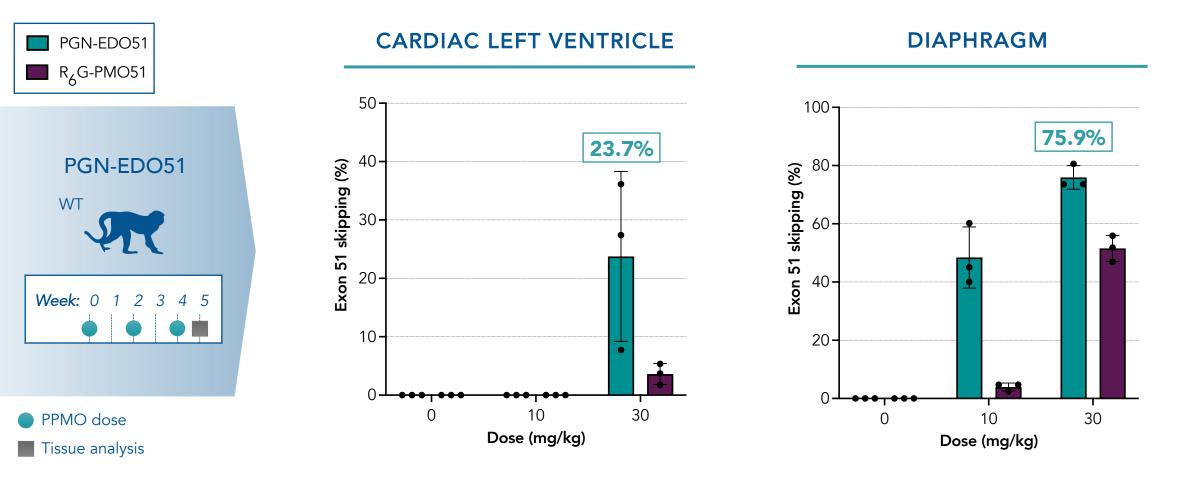
groups. NT = not trea

NHP: BIODISTRIBUTION DATA EXHIBITED ROBUST EDO DELIVERY ACROSS KEY NEUROMUSCULAR TISSUE TYPES


TISSUE PMO QUANTIFICATION

Protocol: NHPs received one slow bolus IV infusion on Day 1, study was terminated on Day 8 and PMO levels were quantified in key tissues. Shown as mean ± SEM; n = 2 per group. CC = cerebral cortex; LLOQ = lower limit of quantification.

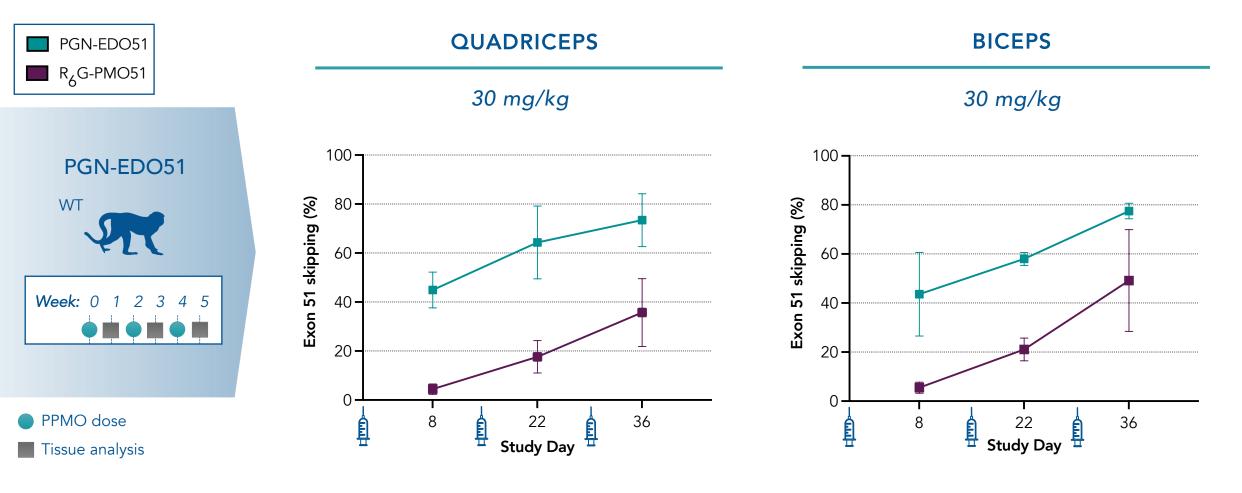
NHP: EXON SKIPPING LEVELS OF >70% OBSERVED IN SKELETAL MUSCLE AT 30 MG/KG



10 mg/kg of PGN-EDO51 was approximately as potent as 30 mg/kg of R₆G-PMO*

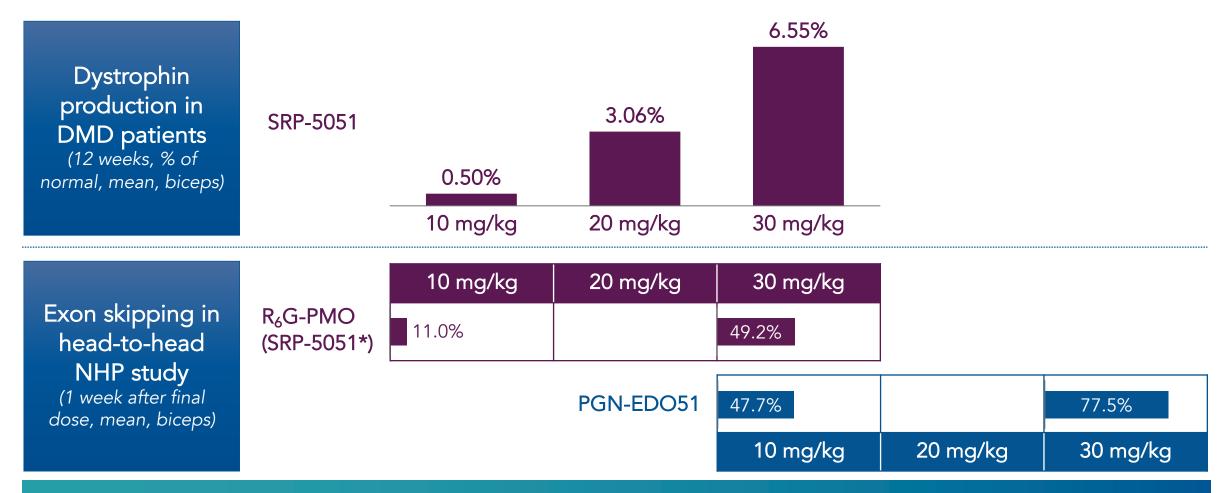
Protocol: PGN-EDO51 and R_6G -PMO were administered to NHP by IV infusion over 30 min at the doses indicated (n=3). Q2W, three doses administered, saline control. Tissues were harvested 7 days after final administration. Shown as mean ± SD; n = 3 per group. Study was not powered for statistical significance. *Believed to be structurally equivalent to SRP-5051.

NHP: PGN-EDO51 EXHIBITED GREATER ACTIVITY IN HEART AND DIAPHRAGM OVER R_6G -PMO



A single dose of 20 mg/kg of PGN-EDO51 afforded 19% exon 51 skipping in whole heart

Protocol: PGN-EDO51 and R_6G -PMO were administered to NHP by IV infusion over 30 min at the doses indicated (n=3). Q2W, three doses administered, saline control. Tissues were harvested 7 days after final administration. Shown as mean ± SD; n = 3 per group. Study was not powered for statistical significance.


NHP: EXON SKIPPING LEVELS ACCUMULATED WITH REPEAT DOSE ADMINISTRATION OF PGN-EDO51

Protocol: PGN-EDO51 and R_6G -PMO were administered to NHP by IV infusion over 30 min at the doses indicated (n=3). Q2W, three doses administered, saline control. Biopsies taken 7 days after each administration; terminal samples collected 7 days after final dose. Study not powered for statistical significance. Data shown as mean ± SD; n = 3 per group.

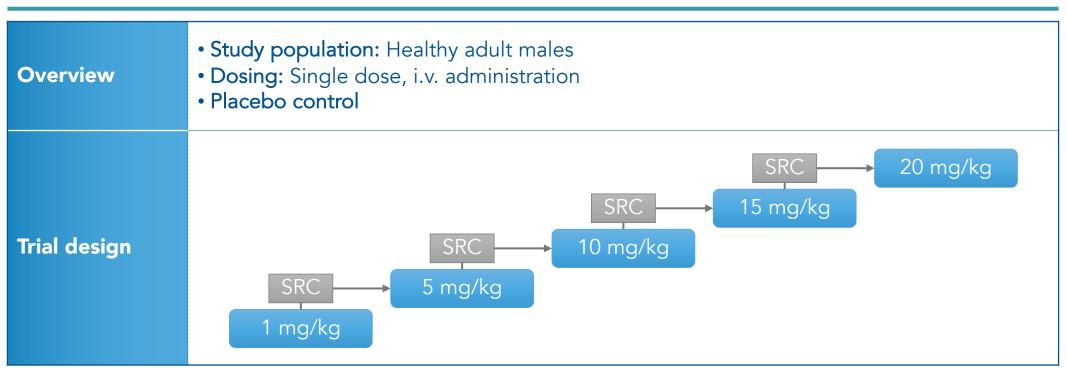
WE BELIEVE PGN-EDO51 HAS ROBUST POTENTIAL TO PRODUCE DYSTROPHIN IN PATIENTS

Sarepta has initiated a pivotal trial for SRP-5051

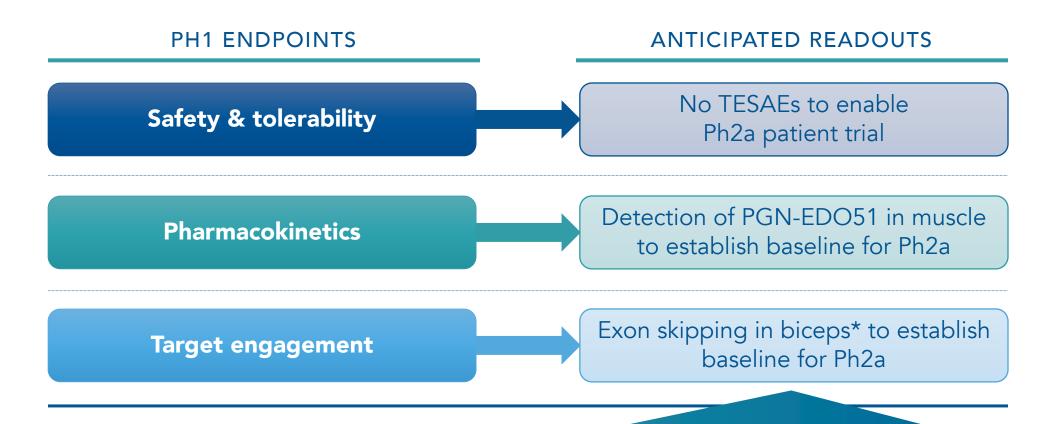
Source: SRPT Momentum updates, 07Dec20 and 03May21, dystrophin measured by Western blot. PepGen NHP protocol: PGN-EDO51 and R₆G-PMO were administered to NHP by IV infusion over 30 min at 10 and 30 mg/kg indicated (n=3). Q2W, three doses administered, saline control. Tissues were harvested 7 days after final administration. Shown as mean. *Believed to be structurally equivalent to SRP-5051.

PGN-EDO51 WAS GENERALLY WELL-TOLERATED AT CLINICALLY-RELEVANT DOSE LEVELS

TOLERABILITY PROFILE AT TARGET DOSE LEVEL


GLP	Single dose 28D		 No mortality and no SAEs No adverse microscopic observations No adverse impacts on clinical chemistry markers
	Single dose 28D	R	 No mortality and no SAEs No adverse microscopic observations No adverse impacts on clinical chemistry markers
Non-GLP	Immunogenicity screen		 No significant immunotoxicity flag in human peripheral blood mononuclear cells

CTA accepted: Health Canada has reviewed our preclinical safety dataset and authorized Ph1 initiation


HEALTH CANADA HAS AUTHORIZED THE INITIATION OF OUR ONGOING PH1 TRIAL IN HEALTHY NORMAL VOLUNTEERS FOR PGN-ED051

PH1 HEALTHY NORMAL VOLUNTEER (HNV) TRIAL DESIGN

ONGOING PH1 HNV TRIAL POTENTIALLY ENABLES 2023 PH2A TRIAL IN DMD PATIENTS AND COULD ESTABLISH BASELINE FOR KEY ENDPOINTS

Sarepta reported median exon skipping levels of <0.2% for SRP-5051 in HNV; exon skipping in DMD patients was >10x higher at the same dose level**

TESAEs = Treatment-Emergent Serious Adverse Events. * Assayed 10 days post-dose ** Source: SRPT Momentum updates, 07Dec20 and 03May21, measured by ddPCR. Exon skipping in DMD patients reported following three doses Q4W in a multiple ascending dose trial.

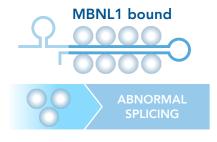
PEPGEN HAS RECEIVED REGULATORY AUTHORIZATION TO INITIATE A PH1 HEALTHY NORMAL VOLUNTEER (HNV) TRIAL FOR PGN-EDO51

	2022	2023	2024
Anticipated milestones	 2Q: First HNV dosed in Ph1 trial YE: Ph1 clinical safety, oligo delivery & exon skipping topline data 	 1H: IND filing 1H: Initiation of Ph2a DMD patient clinical trial 	 Safety and dystrophin data in DMD patients (Ph2a)
Overview	 HNV study will assess safety and tolerability, oligo delivery & exon skipping Study is being conducted in Canada 	 Study will assess safety and tolerability, exon skipping and dystrophin in DMD patients Safety readouts from HNV study anticipated to support MAD initiation at higher dose levels Precedents suggest that exon skipping readouts will be higher in patients than in HNVs at the same dose level Anticipate that study will be conducted in multiple geographies, including U.S. 	

PGN-EDODM1 FOR MYOTONIC DYSTROPHY TYPE 1 (DM1)

MYOTONIC DYSTROPHY TYPE 1 IS A PROGRESSIVE, DEBILITATING NEUROMUSCULAR DISORDER WITH GREAT UNMET NEED

ROOT CAUSE OF	SYMPTOMATOLOGY	PATIENT POPULATION**	THERAPEUTIC
DISEASE	& NATURAL HISTORY		LANDSCAPE
 Due to a CTG repeat expansion mutation in the DMPK gene Leads to downstream dysregulation of a broad set of proteins 	 Myotonia, muscle weakness, GI issues CNS symptoms*, cardiac & respiratory abnormalities Wide range in age of onset, life expectancy 45 – 60 years 	~40,000 (US) ~75,000 (EEA) ~15,000 (JP)	 No approved disease- modifying therapeutics Standards of care focused on symptom management


PEPGEN'S PLATFORM DELIVERS STERIC BLOCKING ASOs TO RESTORE CELLULAR FUNCTION IN DM1

DM1 CAUSED BY CUG TRIPLET EXPANSION HAIRPIN LOOP IN DMPK RNA SEQUESTERING MBNL1 PROTEIN

WITHOUT TREATMENT

CUG repeats form 'hairpin loops' in the *DMPK* RNA, which sequester a key RNA processing protein (MBNL1)

Downstream mis-splicing events and aberrant protein expression gives rise to disease phenotypes

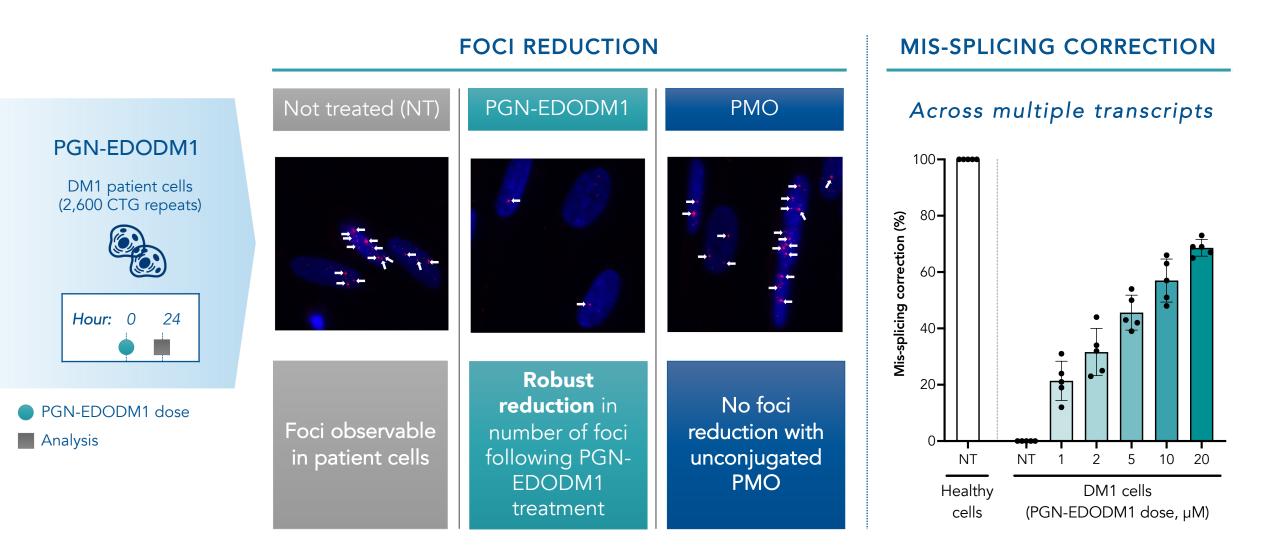
WITH PGN-EDODM1 TREATMENT

PGN-EDODM1 binds toxic CUG repeats in *DMPK* RNA and blocks MBNL1 binding

MBNL1 free

Downstream splicing patterns are restored

PGN-EDODM1 is designed to restore MBNL1 functions and correct downstream mis-splicing events

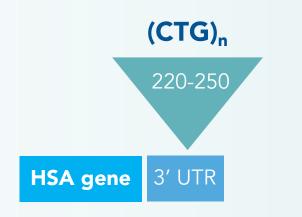


THE PHARMACOLOGY OF PGN-EDODM1 HAS BEEN EVALUATED IN MULTIPLE PRECLINICAL MODELS

		Species	Study design	Key readouts observed
	Patient cells PGN-EDODM1	DM1 patient	Hour: 0 24	 Reduction in nuclear foci Correction of downstream transcript mis-splicing
Non-GLP pharmacology studies	Single dose PGN-EDODM1	HSALR	Week: 0 1 2	 Correction of downstream transcript mis-splicing Normalization of myotonia
	Duration of effect PGN-EDODM1	HSALR	Week: 0 12 24	 Correction of downstream transcript mis-splicing for at least 24 weeks post-dose
Non-GLP dose- range finding	Single dose PGN-EDODM1	WT	Week: 0 1	In progress
(DRF) studies	Repeat dose PGN-EDODM1	WT	Week: 0 1 2 3 4 5	• In progress

PepGen

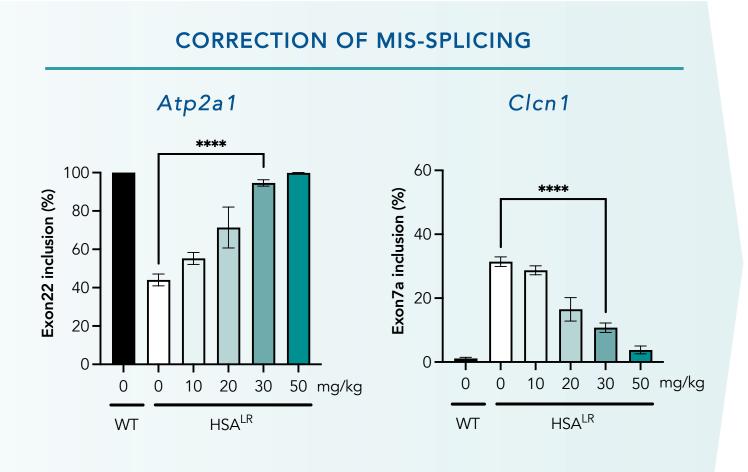
PGN-EDODM1 REDUCED PATHOGENIC NUCLEAR FOCI AND CORRECTED DOWNSTREAM TRANSCRIPT MIS-SPLICING



PepGen

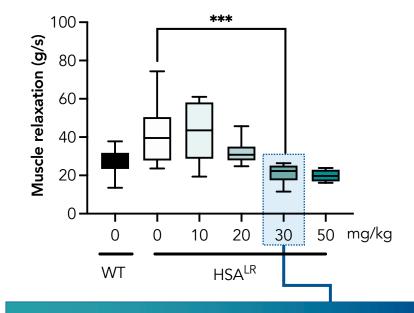
Immortalized myoblasts from healthy individual or DM1 patient with 2600 CTG repeats were cultivated then differentiated for 4 days. Treatment with PMO or peptide-PMO conjugates at concentrations given. Cells were harvested for analysis 24h after treatment. Visualisation with FISH and immunofluorescence. RNA isolation, RT-PCR and capilliary electrophoresis (QIAxcel) analysis. Mean ± SD; n = 5 per group.

HSALR MOUSE DISPLAYS MOLECULAR AND FUNCTIONAL DM1 PHENOTYPE


PepGen

DM1 ASSOCIATED ABNORMALITIES

- Skeletal muscle specific CUGexp
- MBNL1 sequestration in the nucleus
- Downstream mis-splicing events
- Myotonia

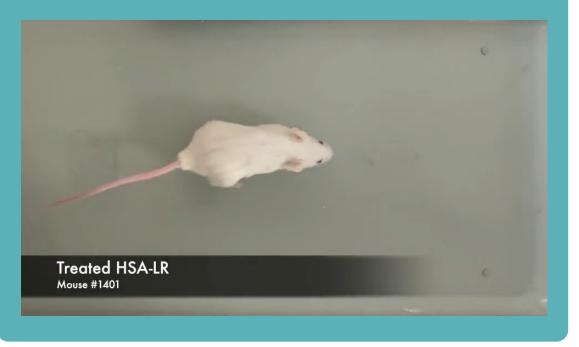


HSALR: PGN-EDODM1 CORRECTED MOLECULAR AND FUNCTIONAL DM1 PHENOTYPE AT GENERALLY WELL-TOLERATED DOSES

REVERSAL OF MYOTONIA

Rate of muscle relaxation

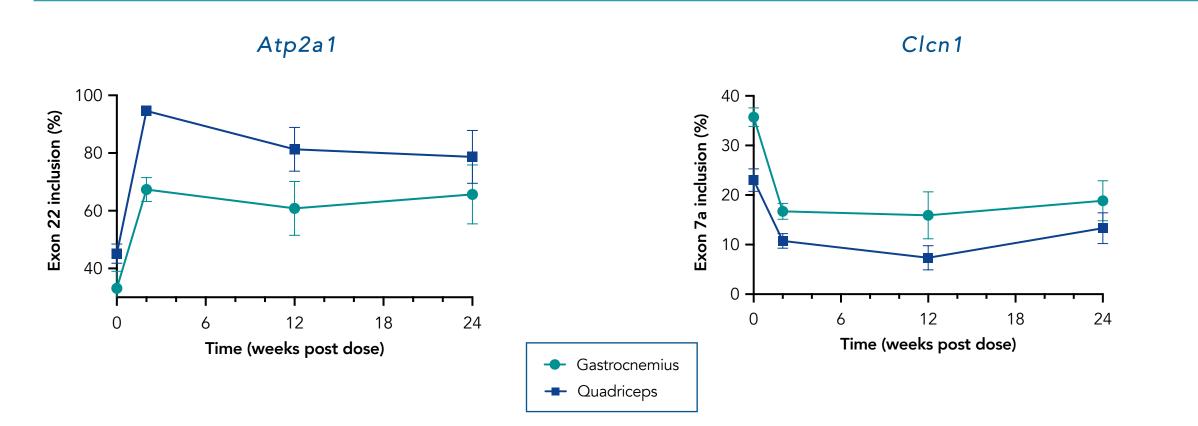
Correction of myotonia observed after a single dose of 30 mg/kg


Protocol: PGN-EDODM1 was administered IV to HSALR at doses (mg/kg): 10, 20, 30 (n=8), 50 (n=4) against a saline control (n=16) and wild-type (WT) saline control (n=8). Myotonia assessed, tissues harvested 2 weeks post-administration. Mis-splicing data is guadriceps. Mean \pm SEM or min to max. **** = $p \le 0.0001$; *** = $p \le 0.001$.

HSALR: SPLICING CORRECTION TRANSLATED TO PHENOTYPIC IMPROVEMENT OF DM1 MICE TREATED WITH PGN-EDODM1

UNTREATED HSALR

TREATED HSALR



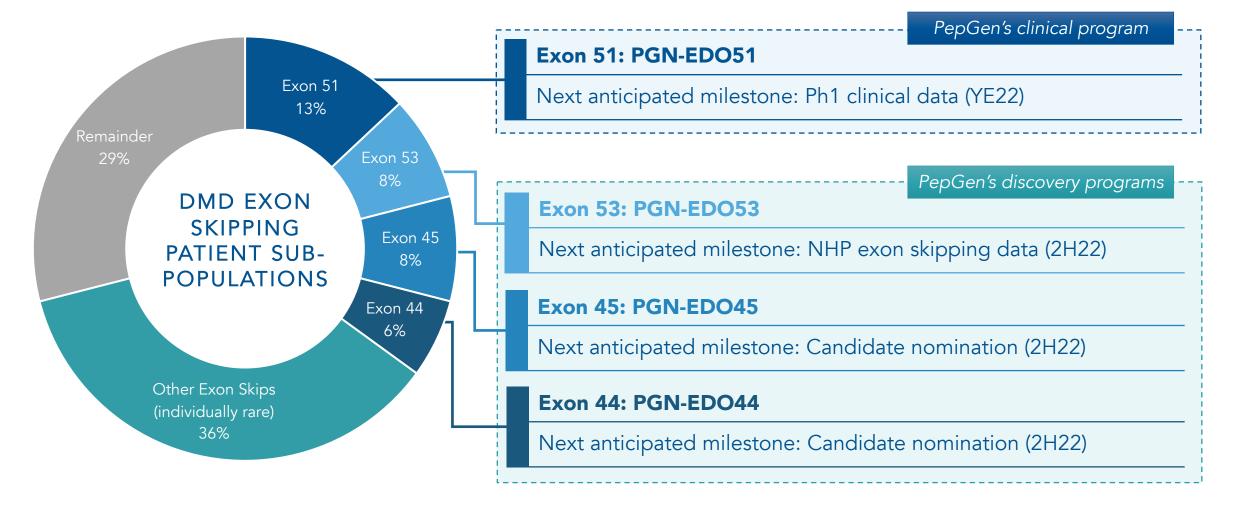
Protocol: PGN-EDODM1 was administered intravenously (IV) to WT and HSALR (DM1 mouse model) at 50 mg/kg (n=4-16); myotonia assessed two weeks post-administration.

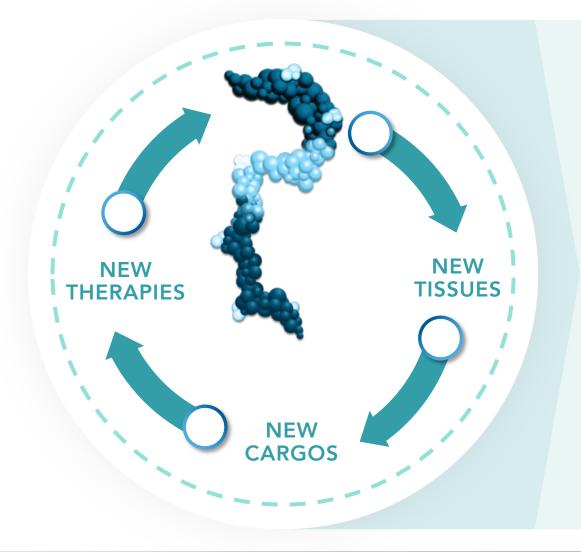
HSALR: SINGLE DOSE TREATMENT OF PGN-EDODM1 LED TO DURABLE IMPROVEMENTS IN SPLICING THROUGH 24 WEEKS

CORRECTION OF MIS-SPLICING

Protocol: PGN-EDODM1 was administered intravenously (IV) to WT and HSALR (DM1 mouse model) at 30 mg/kg; gastrocnemius muscle harvested 2 (n=8), 12 (n=8) or 24 (n=5) weeks post-administration; graph plotted as mean \pm SEM; n = 7 for 0 timepoint. 8 for 2- and 12-week timepoints; 5 for 24-week timepoint.

PEPGEN IS ON TRACK TO FILE AN IND FOR PGN-EDODM1 IN 1H23


	2022	2023	2024
Anticipated milestones	 2Q: NHP dose range- finding study 2H: IND-enabling studies 	 1H: IND filing 1H: Initiation of Ph1/2 DM1 patient clinical trial 	 Safety and splicing data in DM1 patients (Ph1/2)
Overview		 Aim of clinical studies is to assess safety, tolerability and efficacy of PGN-EDODM1 in DM1 patients 	

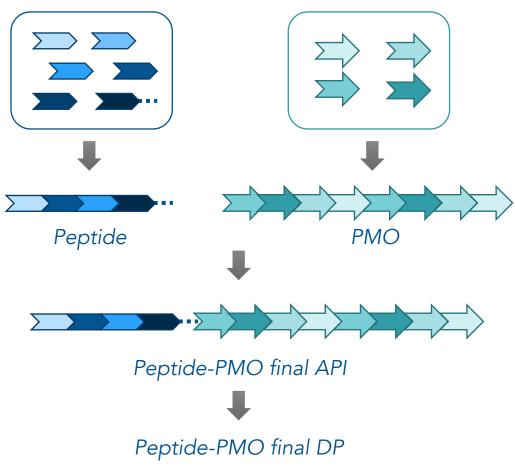

EDO PIPELINE

PEPGEN'S LEAD PROGRAM TARGETS LARGEST EXON SKIPPING PATIENT POPULATION IN DMD

WE ARE HARNESSING THE POWER OF OUR EDO PLATFORM TO REACH NEW TISSUES, DELIVER NEW CARGOS, & DEVELOP NEW THERAPIES

WE WILL LEVERAGE OUR EDO PEPTIDE PLATFORM TO:

- REACH NEW TISSUES
 - Explore full potential of EDO platform across multiple tissue types, including:
 - Deep brain structures via IT administration
 - Peripheral nerves via IV administration
 - Other tissue and cell types


DELIVER NEW CARGOS

- Utilize **modular nature** of EDO platform to evaluate new cargo technologies
- Explore potential for **non-PMO oligo** and small molecule delivery
- DEVELOP NEW THERAPIES
 - Identify opportunities for novel EDO therapeutics
 - Maximize EDO platform and pipeline value through strategic collaborations

CURRENT MANUFACTURING CAPABILITIES DESIGNED TO SUPPORT ALL PLANNED CLINICAL TRIALS AND COMMERCIALIZATION

Readily-available raw materials

HIGHLIGHTS:

- Fully synthetic manufacturing process; no cellbased steps
- Product and intermediates are readily characterized
- Research to date suggests product has robust stability
- Multiple cGMP DP batches have been manufactured and released; material shipped to Ph1 site

CONCLUSION

THE FUTURE OF PEPGEN

2022	Ph1 tolerability, oligo delivery & exon skipping data in HNV anticipated
2023	Anticipate initiation of patient clinical trials for DMD & DM1
2024	 Anticipate clinical POC in two indications: Patient dystrophin data (DMD) Splicing data (DM1)

- 5 NMD therapies in pipeline
- Work underway to **leverage EDO platform** to expand to new tissues and new indications
- An experienced team with a **deep commitment to the patient community**

THANK YOU